4層基板における CMOSIC のピン浮き発生時電源電流特性の測定

月本 功 池上 徹 意木 正夫 橋爪 正樹 " 四柳 浩之 " 一宮 正博 " 為貞 建臣 "

Measurement of Supply Current in CMOS IC with Pin Opens on Four-layered Printed Circuit Board

Isao TSUKIMOTO, Toru IKEGAMI, Masao TAKAGI, Masaki HASHIZUME, Hiroyuki YOTSUYANAGI, Masahiro ICHIMIYA and Takeomi TAMESADA

Synopsis

Recently, CMOS ICs has been miniaturized by the advancement of the semiconductor processing technology. Therefore, detecting the pin-open faults that occur when ICs are soldered on a printed circuit board has been more difficult. There is a possibility that the pin-open faults cannot be detected by an appearance check and a functional test. Thus, we proposed the test method based on supply current measurement for detecting the pin-open faults in the past. In this test, it is judged that the pin-open faults exist when supply current that is larger than fault free circuit is measured. While the possibility that the pin-open faults are able to be detected by the test method was shown by evaluation experiments. In the experiments, single-layered printed circuits board was used. However, multi-layered printed circuit board is used generally. In this journal, the supply current in CMOS IC with single pin-open fault on four-layered printed circuit board is measured. As the result, supply current that is larger than fault free IC is confirmed.

1.はじめに

近年、ディジタル回路を構成する集積回路の設 計、製造技術が著しく発達し、産業用、民生用を 含む現代社会を支えるあらゆる用途で電子回路応 用製品が使用されている。特に金融機器、輸送機 器、医療機器などの分野では、非常に高い信頼性 が要求される。

回路を構成する主要部品である集積回路(IC) は高性能化の一方で、著しく小型化が進み、電子 回路製品の付加価値向上に貢献している。しかし 製造した製品の検査という面では深刻な問題が生 じている。

ー般的に電子回路はプリント配線板に IC やその他の受動部品を実装することで構成されるが、 これらの部品の小型化により、部品実装時に生じ る実装不良の検出が非常に困難になっている。特 に IC はピン間ピッチが 0.65mm あるいは 0.5mm と、 非常に狭ピッチ化しており、かつピン数が数 100 と非常に多数であり、実装不良の検出が困難となっている。

IC は TTL、ECL といったバイポーラ形 IC と CMOS 形の IC に分類される。現状ディジタル IC の主流 は CMOS 形である。本論文は CMOS IC の検査につい ての内容である。

製造メーカにおける一般的な検査は外観検査と 通電検査である^{1)~6)}。前者は人による実装状態の 目視検査、またそれを自動化し、カメラと画像処 理技術を使用した検査装置を使用した検査である。 後者は、回路に電源を加え、実際に規定の動作を させ、正常に動作するか否かを判定するファンク ションテストである。外観検査を人が行う場合、 担当者の技量により製品品質が大きく左右される。 また画像処理を用いた検査では、半田量や半田状 態など微弱な差異は見逃す可能性がある。一方、 ファンクションテストは実際に動作させるため、 多くの不良はこのテストで発見することができる。

^{*} 電子工学科

^{**} 専攻科 電子通信システム工学専攻

^{***} 徳島大学

しかし、このテストでも検出が困難な実装不良が 存在する。ICのピンとプリント配線板の間の断線 故障(以下、ピン浮きと呼ぶ)である。

IC をプリント配線板に実装する際に生じる可 能性が高いのは過剰はんだによる隣接ピンとの短 絡故障と、はんだ不足によるピン浮きである。短 絡故障はその影響が論理値へ現れるため、ファン クションテストでほとんど検出可能である。これ に対してピン浮きは、ピン浮きが生じたピン(以 降、故障ピンと呼ぶ)の不定電圧であるため、0 と1のどちらの論理として動作するか不明である。

故障ピンの電圧は周辺回路からの静電誘導や電 磁誘導によって、回路動作により変動する可能性 がある。また周辺温度に依存して電圧がドリフト することも考えられる。したがって、ファンクシ ョンテストでは見逃す可能性がある。

そこで我々の研究グループでは、電源から IC に供給される電源電流を測定し、ピン浮きの有無 を検査する検査法を提案し、その有用性を示して きた^{7)~11)}。

過去の評価実験では片面基板にCMOS ICを実装し、 ピン浮きを挿入した状態で電源電流測定を行った。 その結果、電源電流に異常が現れることを確認し、 これによりピン浮きが検出できる可能性が高いこ とを示した。

現在の電子回路では2層基板、4層基板、6層 基板、8層基板と、小型化要求に応じて多層基板 が使用されることが多くなっている。層数が増加 し、ベタ電源層、ベタグランド層、配線層など、 故障ピン付近に電圧誘導を起こさせる原因になる 要因が多くなり、ピン浮き発生時の電源電流特性 への影響が現れる可能性が高い。そこで4層基板 におけるピン浮き発生時のCMOS ICの電源電流を 測定し、電流異常が発生し、本検査法でピン浮き 検出が可能であるか否かを調査したので報告する。

2.電源電流測定による CMOS IC のピン浮き 検査法

CMOS 回路は静的な状態では電源電流がほとん ど流れないという特徴がある。2 入力 NAND ゲート の CMOS 回路を図 1 に示す。図 1 の V_A が Low 電圧 の場合は、PMOS#1 は ON、NMOS#2 は OFF となり、 V_B の電圧値によらず電源電流は流れない。この時 出力は High 電圧となる。

一方、V_AがHigh電圧の場合は、PMOS#1はOFF、
NMOS#1がONとなり、V_Bに応じて出力電圧、電源

電流が変化する。 V_A が High 電圧の場合の入出力 電圧および電源電流の静特性を図 2 に示す。図 2 の I の範囲では入力電圧 V_B が電源電流は流れてい ない。NMOS#2 が OFF になるためである。また、 V_B が の範囲でも電源電流は流れない。PMOS#1 が OFF の状態で、PMOS#2 も OFF となるためである。 正常回路での静的条件では V_B は I か の範囲に あるので電源電流は流れない。しかしピン浮きが 発生し V_B が に範囲の電圧となった場合、PMOS#2、 NMOS#2 が共に ON となり、電源電流が流れる。特 に V_B がしきい値電圧 V_{TH} 付近では大きな電源電流 が流れる。このように過剰な電流が観測されると ピン浮きが発生していると判断する。

入力 B にピン浮きが発生した場合には、V_Bは不 定であり、必ずしもの範囲の電圧となるとは限 らない。V_Bがあるいはの範囲の場合は、電源 電流は流れず、ピン浮きは検出できない。そこで、 本検査法では図3に示すように、ICを電極で挟み、 外部から交流電界を印加する。図1のBにピン浮 きが発生した場合の図3の電気的な等価回路を図 4に示す。図4のV_Eは電極から交流電界を印加す るための交流電源である。

図3 交流電界による静電誘導

図4 本検査法の等価回路

CMOS 回路では入力抵抗が非常に大きいため、その影響を無視すると、図4のBには式(1)に示す電圧が誘導される。

$$V_{B} = \frac{C_{1}}{C_{1} + C_{2}} V_{E}$$
(1)

交流電界を印加し、式(1)の電圧変動を B に発 生させ、V_H付近に誘導することで過剰な電源電流 が流れ、ピン浮き検出が可能となる。

3. 電源電流測定実験

ピン浮きの存在する回路で過剰な電源電流が流 れることは過去の実験で確認されており、本手法 によってピン浮きが検出できる可能性が高いこと が示されている。

過去の実験では片面配線の2層基板を使用して いた。しかし現実の案件では多層基板が使用され ることが多い。多層基板では内層にベタ電源層や ベタグランド層をレイアウトすることが一般的で ある。本検査法では回路の信号グランドを基準に 交流電界を印加する。基板内層に電源やグランド がレイアウトされている場合、故障ピンとグラン ド、電源との物理的距離が近くなる。その場合、 図4のC2の値が大きくなることが予想される。そ の結果、式(1)の電圧が小さくなり、故障ピンに誘 導される電圧振幅が小さくなり、故障ピンの電圧 を V_H 付近まで変化させることが困難となる可能 性がある。本実験では、ベタグランドが内層に存 在する場合にもピン浮き発生時に過剰な電源電流 が流れるか否かを調べた。

図5に使用した基板の2層目の配線レイアウト 図を示す。図5のaをベタ電源とし、aと近接す るピンにピン浮きを挿入し、実験を行った。図5 の基板の基板厚は1.6mmである。

実験にはアルテラ社の PLD[「]EPM7064STC100-10」 を使用した。この IC の電源電圧は 5 V である。部 品形状を図 6 に示す。図 6 に示すように、この部 品はピン数が 100、ピン間 0.5mm ピッチの QFP パ ッケージ品である。

PLD には図7に示す4ビット加算器を書き込み 使用した。この回路では最下位ビットのA0にTV と故障ピン入力のAND 出力を入力している。CMOS 回路のAND 回路は、入力部分に図1のNAND 回路が 使用されるので、TV がLow 電圧の時には過剰な電 源電流は流れないことが予想される。

図5 4層基板2層目の配線レイアウト

故障ピンの初期電圧は不定である。基板上のパットと故障ピンは非常に近接している。また故障 ピン両隣のピンとも非常に近い。これら隣接する 配線と故障ピンの間には浮遊容量が存在するため、 故障ピンの初期電圧に影響すると考えられる。本 実験ではそられの電圧はすべて High 電圧(5V)と した。

電源電流の測定結果を図8に示す。図8の CH2 の波形より、過剰な電源電流を確認することがで きる。また TV が High 電圧の場合に大きな電流が 流れることが確認できる。この結果より、内層に ベタ電源層が存在する場合にも本検査法でピン浮 きを検出できる可能性があることがわかる。

CH1:TV 電圧波形, CH2:電源電流(5A/V,AC 結合) CH3:電界印加用交流電源, CH4: SO 電圧波形 図 8 測定結果

4.むすび

電子回路製品の小型化要求により、ピン間ピッ チが非常に狭い表面実装形 CMOS IC が主流となっ ている。これらの IC をプリント配線板に実装する 際に発生するピン浮きは、従来の外観検査やファ ンクションテストでは検出困難な故障である。 我々は過去に、回路外部から交流電界を印加した 状態で電源電流を測定することで、ピン浮きの有 無を検査する手法を提案し、実験によってその有 用性を示してきた。過去の実験では片面基板を使 用して評価実験を行ってきたが、多層基板を使用 するのが一般的である。本研究ではベタ電源の存 在する4層基板において本検査法でピン浮きが検 出可能かどうかを調べるため、IC にピン浮きを挿 入し、電源電流特性を測定した。その結果、本手 法でピン浮きを検出できる可能性があることが確 認できた。

本実験では、内層ベタ電源の基板を用いて測定 を行った。現実には、これ以外に内層にはベタグ ランドや配線がレイアウトされる。内層ベタグラ ンドや内層配線の存在する多層基板においてピン 浮き発生時の電源電流特性を測定し、本検査法に どう影響するかを調査することが今後の課題であ る。

参考文献

1)秋山伸幸:検査技術の最新の話題と動向,回路 実装学会誌,Vol.11,22-24,1996.

2)安藤護俊:実装の検査技術の現状と今後,サー キットテクノロジ, Vol.9, No.3,153-156(1994). 3)尾藤顕一: CCDカメラによる半導体部品の検査, サーキットテクノロジ, Vol.9,No.3, 157-162(1994).

4)村岡建樹:レーザ式はんだ付け外観検査装置 , サーキットテクノロジ , Vol.9,No.3 , 163-167(1994).

5)島崎健一,深町哲昭:X線方式によるはんだ付 け検査の現状と技術の動向, Vol.9,No.3, 169-173(1994).

6)深町哲昭:マイクロフォーカスX線による内部 検査技術,回路実装学会誌,Vol.11,No3, 181-188(1996)

7) 一宮正博、橋爪正樹、四柳浩之、為貞建臣:" CMOS 論理 IC の交流電界印加時の電源電流測定による ピン浮き検出法",エレクトロニクス実装学会誌, Vol.6, No.2,140-146(2003). 8)高木正夫、月本功、橋爪正樹、一宮正博、四柳 浩之、為貞建臣:交流電界印加時の電源電流によ る CMOS PLCC IC のピン浮き検出,平成14年度電気 関係学会四国支部連合大会講演論文集, 139(2002).

9)高木正夫、月本功、橋爪正樹、一宮正博、四柳浩 之、為貞建臣:交流電界印加時の電源電流による CMOS TQFP IC のピン浮き検出,平成15年度電気 関係学会四国支部連合大会講演論文集, 134(2003).

10)高木正夫、橋爪正樹、石井寛文、月本功、一宮 正博、四柳浩之、為貞建臣:低電源電圧CMOS TQF P ICの交流電界印加時の電流テストによるピン 浮き検出,平成16年度電気関係学会四国支部連合 大会講演論文集,110(2004).

11) 高木正夫、橋爪正樹、月本功、一宮正博、四 柳浩之、為貞建臣:交流電界印加時のリード浮 き電流テストでのリード浮き発生信号線への出 力論理値の影響,H17年度電気関係学会四国 支部連合大会講演論文集,118(2005).