電流テストにおける交流電界印加用電圧波形形状による IDDO 出現時間への影響

月本 功* 田中 聖也** 須崎 晴登*

Effect on IDDQ Flow Time by Voltage Waveform for Applying AC Electric Filed on Supply Current Test

Isao TSUKIMOTO, Seiya TANAKA and Haruto SUZAKI

Abstract

The method for detecting lead open faults of CMOS ICs on printed circuit board by measuring quiescent power supply current (I_{DDQ}) was proposed in the past. The fault detectability is affected by the time of flowing IDDQ (T_{FC}). In that method, sine waveform was used to detect open faults. In this research, Maximum value, minimum value, average value and standard deviation of T_{FC} of 8 waves are compared. As the result, trapezoidal wave is effectual waveform for supply current test.

Keywords: Fault Detection, Open fault, Supply Current, Waveform, Reliability

1. はじめに

現在社会において電子回路関係技術は不可欠な技術 となっている。この技術は民生機器以外にも産業機器 や医療機器など、信頼性の要求される用途で使用され ている。電子回路にはアナログ回路とディジタル回路 に大きく分類される。そのうち、ディジタル回路は機 器の制御で用いられることが多く、回路の誤動作は深 刻な不具合につながる。したがって、ディジタル回路 の信頼性向上は、多くの分野のおける重要な課題の一 つである。

ディジタル回路の高機能化要求にともなって,回路 を構成するLSIの高機能・大規模化が進む一方,非常 に小型化されたLSIが多く普及している。これらのLSI をプリント基板に実装して回路を製造した場合,製造 後に,検査担当者目視の外観検査やカメラを用いた画 像処理による検査が行われる。しかし,LSI 端子間が 狭ピッチ化し,プリント基板上への部品実装時に生じ る実装不良検査が困難になっている。

一方、回路を実際に動作させ、正常動作するか確認

** 香川高等専門学校専攻科 電子情報通信工学専攻

する機能テストが一般に実施される。機能テストでは、 回路内に生じた故障を、信号線の論理値が0,1いずれ かの固定値となった故障として扱う縮退故障モデルに 基づき検査される¹⁾。LSI 実装時に生じる主な故障に は、はんだ過剰による隣接端子間の短絡故障と、はん だ不足によるプリント基板とLSI 間の接触不良による 断線故障(実装時の断線故障はリード浮きと呼ばれる)。 短絡故障は故障箇所電圧が固定値となるため縮退故障 でモデル化でき、原理上検出可能である。一方、ディ ジタル LSI を構成する CMOS 回路の入力インピーダ ンスは非常に大きく、リード浮きは故障個所電圧値が 不定である。また、その電圧は周辺温度や周辺回路動 作の影響で変動するため、縮退故障でモデル化できず、 機能テストを行っても見逃す可能性がある。

これに対し、正常な CMOS 回路は静的電源電流が流 れないという電気的特徴を利用した電流テストが過去 に提案され、多くの評価実験が行われている^{20~8}。こ の検査法は、LSI を外部電極で挟み、回路外部から交 流電界を印加した状態でプリント基板上に実現された 回路に供給される静的電源電流 IDDQ を測定し、過剰な IDDQ を検出すると故障ありと判定する。

^{*} 香川高等専門学校 電子システム工学科

本検査方法は、 I_{DDQ} を観測しリード浮きの有無を判 定するため I_{DDQ} 値や I_{DDQ} 出現時間が重要な指標とな る。しかし、LSIの低消費電力化の影響で、 I_{DDQ} 値や I_{DDQ} 出現時間が小さくなっている。これにより、リー ド浮きを見落とす可能性があり、検査品質低下につな がる。 I_{DDQ} 出現時間は交流電界印加用電圧波形に影響 されるため⁹、本件では「 I_{DDQ} 出現時間の確保」を目標 に、過去の評価実験で使用されていた正弦波を含む 8 種類の波形形状を使用し、各波形形状におけるリード 浮き発生時の I_{DDQ} 出現時間(以降、 T_{FC} と表記)の測定・ 比較を行う。ここでは、 T_{FC} の変化が少なく、最小値が 大きい波形を電流テストに適した波形であるものとす る。

本検査法は LSI の電源電流特性を利用したもので あるため、異なる LSI では電気的特性が異なるため電 流テスト時の $T_{\rm FC}$ に差異が生じる。そこで、電気的特 性が異なる 2 つ LSI を対象として同様の実験を行い、 どの程度 $T_{\rm FC}$ に変化が現れるかを調べた。

2. 電流テストによる故障検出法

2.1. CMOS 回路の静特性

ディジタルLSIはCMOS 回路で構成され、CMOS は nMOS と pMOS を組合せることで実現される。基本ゲ ートの一つである NOT ゲートの回路図を図1に示す。 図 2 はその静特性である。図 2 の横軸は入力電圧 V_i, 縦軸は出力電圧 V₀(実線)と静的電源電流 I_{DDQ}(点線) である。正論理の場合,論理値0はLow 電圧,論理値 1 は High 電圧に対応する。Low 電圧 ($0 \leq V_i \leq V_{II}$), High 電圧 ($V_{IH} \leq V_i \leq V_{DD}$)は、半導体メーカによって 動作保証された電圧範囲である。以降Low 電圧の範囲 にある電圧をL, High 電圧の範囲にある電圧をH,で 表す。正常回路では、静的状態で入力電圧 V_iはL ある いはH である。V_iがL の場合は nMOS が遮断状態, H の場合は pMOS が遮断状態となり I_{DDO} は流れない。

図1 NOT ゲート回路

2.2. 電流テストによるリード浮き検出原理²⁾

電流テストでは正常な CMOS 回路では I_{DDQ} は流れ ないという特徴を利用し、I_{DDQ}変化(ΔI_{DDQ})が測定さ れると故障ありと判定する。LSI 実装時に生じる短絡 故障は、機能テストでも検出可能であるため、本節で は機能テストで検出困難なリード浮きを検出対象とす る「外部交流電界印加による電流テスト法」の故障原 理について述べる。

本検査法の検出原理図を図3に示す。図3では検査 対象ICはNOT回路で、図中のaは前段LSIとの信号 線、fはNOT回路の入力端子である。

図3 電流テスト原理図

aとfの間にリード浮きが生じると、入力端子fの電 Ev_F が不定であるが、 v_F がしきい値電圧付近の場合に は I_{DDQ} が流れ、リード浮き検出が可能である。しかし、 v_F はしきい値電圧付近とは限らず、その場合は I_{DDQ} が 流れない。そこで、図3に示すように外部から被検査 ICを電極で挟み、交流電界を印加した状態で I_{DDQ} を測 定し、リード浮き検出を行う。回路を電極で挟むこと で、故障箇所端子fと外部電極の間には浮遊容量 C_V と C_G が存在する。したがって断線箇所端子電圧 v_F は式 (1)で表すことができる。

$$v_F(t) = \frac{c_V}{c_V + c_G} v_e(t) + V_0$$
 (1)

ここでの V₀ は検査開始時の故障箇所電圧値(初期電 圧)である。

 v_F は式(1)の第1項により、 v_e によって変化する。これにより、 v_F をしきい値電圧付近に誘導することで ΔI_{DDQ} を生じさせ、リード浮きを検出する。

2.3. 交流電界印加による静的電源電流発生

外部電極から正弦波交流電界を印加した場合,リー ド浮き発生個所の電圧 v_F は式(1)の第1項により正 弦波状に変化する。印加電E v_e の振幅を大きくしてい くと,図4に示すように、 v_F の電圧値は I_{DDQ} が流れる 範囲まで変化し、 ΔI_{DDQ} が生じることになる。電極の GND は検査対象の GND に接続されるので、故障箇所 と GND 電極間の距離は LSI によらずほぼ一定で、 C_G の値もほぼ変化しない。したがって C_V の値を大きく できれば、リード浮き検出のための v_e を小さくするこ とができる。

図4 v_e のによる I_{DDQ} の発生

3. リード浮き発生箇所初期電圧 Voによる Trcの変化

 $T_{\rm FC}$ が変化するのは、交流電界印加用電圧波形だけで はなく、故障箇所電圧の検査開始時初期電圧 V_0 によっ ても $T_{\rm FC}$ に差が現れる。 V_0 の影響による $T_{\rm FC}$ の変化を 図5に示す。 V_0 によって、 v_f がしきい値を通過する時 間にも変化が現れるため、 $I_{\rm DDQ}$ が出現する時間にも変 化が現れる。

図5 V₀による T_{FC}の変化

4. 評価実験

4.1. 評価対象LSI

Altera 社製の MAX V CPLD「5M240ZT144C5N」と Xilinx 社製 Coolrunner-II CPLD「XC2C256-7TQG144C」 を評価対象 LSI とした。 2 つとも 0.18[µm]製造プロセ スで,電源電圧仕様が 1.8[V](内部電源)と 3.3[V](I/O 電 源)の CMOS LSI である。

4.2. 評価対象波形形状

今回の評価対象とする交流電界印加用電圧波を図 6 に示す。図6の左上から正弦波,三角波,矩形波,の こぎり波,逆のこぎり波,矩形波の積分波と微分波, 台形波の計8種類である。全ての波形は、ELMOS 社 製任意波形生成装置「AWG-10K」を用いて生成されて いる。表1にAWG-10K仕様を示す。積分波,微分波 は「AWG-10K」に対応した任意波形生成ソフト「KWG」 の指数関数波形生成の機能より時定数を設定して生成 している。積分波と微分波の時定数は 10[µs]とした。

図6 評価対象波形形状

表 1 AWG-10K 仕様

スルーレート	31.4[V/µs]
出力最高周波数	500[kHz]
サンプリング時間	100[ns]~330[ns]
メモリ	SRAM
立ち上がり時間	112[ns]

4.3.実験方法

実験に使用した基板を図 7 に示す。基板サイズは 90mm×130mm (t=1.6mm) である。図 7 では MAX CPLD が実装されているが, Coolrunner-II CPLD につ いても同様の基板を使用している。

CPLD には図 8 の 4 ビット加算器を書き込んで使用 した。4 ビット加算器の最下位ビット A0 には入力端 子 a, b の AND 演算結果を入力している。図中の AND 回路は、図 9 のように NAND 回路と NOT 回路で構成 される。端子 a のリード浮きを検出するため、NAND 回路に I_{DDQ} を生じさせるには、端子 b に H を印加する 必要がある。TVは IDDQ が流れる経路を活性化させる ため、端子 b に与える信号である。

4 ビット加算器入力は A0 以外の A1~A3, B0~B3 全てを GND に接続し, L とした。これにより出力 S1, S2, S3, C の電圧は常に L である。S0 はリード浮きの 発生している入力 a と TV の電圧により変化するので 実験では出力 S0 の電圧 V_{S0} も測定した。

図9 図8のAND 回路の内部回路

評価実験で使用した測定装置の構成図を図 10 に, 実験で使用した機器類の概要を表2に,それぞれ示す。 LSI を電極で挟み外部から正弦波交流電界を印加した 状態で、LSIの入力にTVを印加し、IDDQを電流プロー ブと電流アンプを用いて測定する。交流電界印加用の 任意波形生成装置の出力をアンプで増幅し電極に印加 する。TVには3.3[V]印加している。

測定はディジタルオシロスコープで行い、オシロス コープの入力は CH1 を TV, CH2 を I_{DDQ}, CH3 を印加 する交流電界電圧 v_e , CH4 を 4 ビット加算器の出力電 圧 V_{S0} とした。

表2 構成機器概要

名称	概要
雷極	上側:(縦)30mm×(横)30mm×(高さ)20mm
њiz	上側:(縦)50mm×(横)50mm×(高さ)12mm
直流電源	METRONIX社製524B,20V,1.2A
AWG-10K	ELMOS社製 任意波形生成装置
アンプ	ゲイン25倍
TVジェネレータ	3.3[V]
電流プローブ	Tektronix社製TCP305
電流アンプ	Tektronix社製TCP300,変換係数5[A/V]
+:	Tektronix社製TDS3034B
19077-7	受動プローブ: TekP3139A 入力容量10~14[pF]

印加する v_e 波形とリード浮き発生箇所初期電圧 V_0 によって変化する。本実験では、 I_{DDQ} 測定前に故障箇所に $0[V]\sim3.2[V]の範囲(0.2[V]刻み)で一時的に印加した。また、<math>v_e$ は 60[Vpp]、周波数は 10[kHz]とした。波形印加ごとに V_0 の 1 設定あたり 10 回の $T_{\rm FC}$ 測定を行い、 $T_{\rm FC}$ の最大値、最小値、平均値および標準偏差を求めた。

4.4.実験結果

図11 は台形波を印加した場合の測定波形である。実 験では図11 のオスロスコープ画面から T_{FC} を測定し た。Altera 社製「5M240ZT144C5N」と Xilinx 社製 Coolrunner-II「XC2C256-7TQG144C」を評価対象とし た場合の印加波形形状ごとの T_{FC} の最大値,最小値, 平均値および標準偏差を表3と表4に示す。比較項目 は平均値,標準偏差,最大値,最小値の4項目あるが, 標準偏差と最小値が重要な項目である。 Altera 社製 CPLD「5M240ZT144C5N」については、 表3より、過去の評価実験で使用していた正弦波の標 準偏差より小さいのは、三角波、のこぎり波、台形波 の3種類である。その中で、最小値が最も大きいのは 台形波である。一方、Xilinx 社製 CPLD「XC2C256-7TQG144C」については、表4より、正弦波より標準 偏差が小さいのは、三角波、のこぎり波、逆のこぎり 波、微分波、台形波の5種類である。その中で最小値 が最も大きいのは台形波であった。

この結果より,評価対象とした2つのLSIについて は、ともに台形波が電流テストに適した波形であるこ とが確認できた。

表3 印加波形形状によるT_{FC}比較 (5M240ZT144C5Nの場合)

波形	平均值[µ s]	標準偏差[µ s]	最大値[µ s]	最小値[µ s]
正弦波	8.40	5.90	24.88	3.12
三角波	9.10	5.10	24.60	3.76
矩形波	9.80	15.00	41.12	1.24
のこぎり波	12.20	5.50	29.01	5.16
逆のこぎり波	14.50	6.20	26.80	5.56
積分波	11.80	13.70	39.60	1.56
微分波	14.60	9.20	35.08	3.72
台形波	12.50	4.90	24.40	5.28

表4 印加波形形状によるT_{FC}比較 (XC2C256-7TQG144Cの場合)

波形	平均值[µ s]	標準偏差[µ s]	最大値[µ s]	最小値[µ s]
正弦波	9.93	7.47	34.00	2.40
三角波	8.98	5.59	33.60	1.60
矩形波	11.29	16.92	47.20	0.80
のこぎり波	11.47	5.74	29.20	2.40
逆のこぎり波	8.12	3.84	24.80	2.00
積分波	11.17	11.06	45.60	1.20
微分波	9.22	5.53	31.20	2.00
台形波	9.74	4.61	26.80	2.80

評価対象とした LSI によってどの程度 T_{FC} に差異が 現れているのかを調べるため, Altera 社製 CPLD の T_{FC} 値を基準に Xilinx 社製 CPLD の $T_{\rm RC}$ 値がどの程度変化 しているかをまとめた。その結果を表 5 に示す。

表5より、平均値、標準偏差、最大値に関しては増 加した波形と減少した波形が確認できるが、最小値に 関しては全ての波形が減少していることがわかる。

表5 LSI による T_{FC}変化

波形	平均値[%]	標準偏差[%]	最大値[%]	最小値[%]
正弦波	18.21	26.61	36.66	-23.08
三角波	-1.32	9.61	36.59	-57.45
矩形波	15.20	12.80	14.79	-35.48
のこぎり波	-5.98	4.36	0.65	-53.49
逆のこぎり波	-44.00	-38.06	-7.46	-64.03
積分波	-5.34	-19.27	15.15	-23.08
微分波	-36.85	-39.89	-11.06	-46.24
台形波	-22.08	-5.92	9.84	-46.97

5. まとめ

電流テスト法は、正常な CMOS 回路では静的電源電流 I_{DDQ}が流れないという特徴を利用し、I_{DDQ}変化が測定された場合、リード浮きありと判断する検査法である。このテスト法では、回路を外部電極で挟み、回路外部から交流電界を印加状態で I_{DDQ}を測定する。本検査方法は、I_{DDQ}を観測しリード浮きの有無を判定するため I_{DDQ}値や I_{DDQ}出現時間が重要な指標となる。しかし、LSI の低消費電力化の影響で、I_{DDQ}値や I_{DDQ}出現時間が小さくなっている。これにより、リード浮きを見落とす可能性があり、検査品質低下につながる。

 I_{DDQ} 出現時間は交流電界印加用電圧波形に影響され るため、本件では「 I_{DDQ} 出現時間の確保」を目標に、 過去の評価実験で使用されていた正弦波を含む8種類 の波形形状を使用し、各波形形状におけるリード浮き 発生時の T_{FC} の測定・比較を行った。また、異なるLSI では電気的特性が異なるため電流テスト時の T_{FC} に差 異が生じる。そこで、Altera 社製 CPLD 「5M240ZT144C5N」とXilinx 社製 CPLD「XC2C256-7TQG144C」の2つのLSIを対象として同様の実験を 行い、どの程度 T_{FC} に変化が現れるかを確認した。

その結果、2 つの LSI において T_{FC} 変化の低減と最 小値増加を確認できた波形は台形波であった。また、

Altera 社製「5M240ZT144C5N」に比べ、Xilinx 社製「XC2C256-7TQG144C」の方が、今回対象とした 8 波形すべてに対して、 T_{FC} の最小値が減少していることがわかった。

参考文献

¹⁾玉本英夫,"論理回路の故障診断",日刊工業新聞社, 1983 年

- 2)Masao Takagi et al., "AC Electric Field for Detecting Pin Opens by Supply Current of CMOS ICs", Proceedings of International Conference on Electronics Packaging, pp217~222, 2004 年
- 3)池上徹 他, "交流電界印加時電源電流測定によるリ ード浮き検出における内層ベタグランドの影響", 平成 18 年度電気関係学会四国支部連合大会講演論 文集 p.69, 2006 年
- 4)月本功他, "交流電界印加時の電流テストによる CMOS IC のリード浮き検出における電界印加電圧 への周辺配線の影響", 平成20年度電気関係学会四 国支部連合大会講演論文集 p.103, 2008 年
- 5)月本功 他, "90nm プロセス FPGA の外部交流電界印 加状態でのリード浮き発生時静的電源電流測定", 平 成 21 年度電気関係学会四国支部連合大会講演論文 集 p.115, 2009 年
- 6)富田泰基 他,"ディープサブミクロンプロセスFPGA のリード浮き発生時静的電源電流特性",平成22年 度電気関係学会四国支部連合大会講演論文集 p.81, 2010 年
- 7)西川大樹 他,"電流テストによる CMOS LSI のリー ド浮き検出に対する LSI 低消費電流化の影響",平 成 23 年度電気関係学会四国支部連合大会講演論文 集 p.130, 2011 年
- 8)安藤諒 他,"交流電界印加時の電流テストによる BGA LSI のはんだボール断線故障検出",平成25年 度電気関係学会四国支部連合大会講演論文集 p.100, 2013 年
- 9) Seiya Tanaka et al, "IDDQ Flowing Time by Voltage Waveform for Applying AC Electric Filed on Supply Current Test", Proceedings of International Seminar on Nanoscience and Nanotechnology 2016, pp.35-36