	*/r/i	古红体外								
科目名	数値計算法 Numerical Computations			担当教員	3当教員 伊藤 勉					
学 年	4	学期	 通 年	科目番号	08218		単位数		2	
分 野	専 門	授業形式	講義・演習	履修条件			必履修			
学習目標	C 言語プログラミングにて、最小二乗法、補間法、数値積分、常微分方程式の初期値問題を数値的に解く能力を身につける。上記の各項目について、以下のことができることを目標とする。 1. 数値計算法の基礎式を導出することができる。 2. 基礎式を用いて数値解を電卓、手計算で求めることができる。 3. 数値解をコンピュータで計算するためのフローチャートが作成できる。 4. 数値解をコンピュータで計算するためのプログラミングができる。									
進め方	 各項目について,以下の手順で授業を進める. 1. 数値的に解くための基礎式の誘導について解説する. 2. 基礎式を使って数値計算する例題を示し、演習問題を電卓で解いて提出する. 3. 上記の計算過程をフローチャートで置き換え、それにしたがってプログラミング実習を行う. 4. プログラムを用いた応用問題に取組み、その結果を提出する. 									
	学習項目(時間数)				合格判定水準					
学習内容	1. 最小二乗法(14) (1) 直線回帰による最小二乗近似 (2) 曲線回帰による最小二乗近似			きる. •基礎ュ を計算	・基礎式を用いてデータの回帰直線、回帰曲線を計算し、フローチャートの作成およびプログラミングができる. ・ラグランジュ補間法による数値積分の基礎式を導くことができる. ・基礎式を用いてラグランジュ補間の値を計算					
	前期中間試験(2)			グフミ						
	2. 補間法(14) (1) ラグランジュ補間法			を導く • 基礎:						
	前期末試験(2)			してフローチャートの作成およびプログラミングができる.・台形公式,シンプソンの公式による数値積分の基礎式を導くことができる.・基礎式を用いて数値積分値を計算してフローチャートの作成およびプログラミングができ						
	3. 数値積分 (14) (1) 台形公式による数値積分 (2) シンプソンの 1/3 公式による数値積分									
	後期中間試験(2) 4. 常微分方程式の初期値問題の数値解析(14) (1) オイラー法 (2) ルンゲ・クッタ法			る. ・常微分方程式の初期値問題を数値的に解く、 オイラー法、ルンゲ・クッタ法の基礎式を導くことができる. ・基礎式を用いて数値積分値を計算してフローチャートの作成およびプログラミングができ						
	後期末試験(2)	未試験(2)			る. 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
評価方法	・評価の内訳は、定期試験 70%、レポート 30%とし、総合評価を 100%とする. ・評価の重みは、学習項目の 1~4 章をそれぞれ 25%として評価する.									
学習・教 育目標と の関係	機械工学コースの学習・教育目標との関連 学習項目 1~4 に対して ◎:(B)知識, B-1 数学, 物理学などの自然科学に関する基礎知識を身につける.									
関連科目	情報処理 $I(2 \oplus 1)$ 一情報処理 $I(3 \oplus 1)$ 一数値計算法(4 年) 一計算力学(5 年)									
教 材	教科書:杉江日出澄,鈴木淳子:「C言語と数値計算法」,培風館,および,テキストを配布 参考書:林晴比古 新訂新 C言語入門ビギナー編 ソフトバンクパブリッシング 林晴比古 新訂新 C言語入門シニア編 ソフトバンクパブリッシング 水島二郎,柳瀬真一郎:「理工学のための数値計算法」,数理工学社 など									
備考	・ 情報処理 I, 情報処理 II を修得していることが望ましい. ・ 教科書, テキスト, 関数電卓を持参のこと.									