平成24						
科目名	電気回路I・同演習			+0 1/ 4/- 5		
件日右	Electrical Circuits I			担当教員	資 漆原 史朗	
学 年	4	学期	 	科目番号	号 09306 単位数 3	
子 节 分 野						
分 野	専門	授業形式	講義	履修条件	II.	
	目標区分 (B-2):					
	電気回路 I では,微分積分や電気基礎等で学んだ基礎学理を基に,記号法を用いた正弦波定常解					
学習目標	析を理論的に理解し、過渡現象解析に繋がる回路解析の基礎を習得する。さらに、各種基本法則や					
	4端子行列を用いた回路解析を理解し,複雑な回路に対する基礎解析能力を身につける。また,3相					
	交流についての知識を身に付け,交流機器の基礎原理を理解する。					
	教科書の内容を中心とした講義と例題等の解説を行う。章末問題等の演習を自主的に行うなど、					
進め方	予習・復習することが理解度を高める上で必要となる。					
	学習項目(時間数) 合格判定水準					
	1. ガイダンス(1)			記号法による正弦波定常解析法を用いて簡	
					単な回路に対して定常解を求めることがで	
	2. 電気回路基礎(17)				き、導出過程について説明することができ	
	正弦波定常解析 (2素子回路)			る。		
	枝電流と網目電流					
	複素電圧,複素電流		• ;	網目電流,枝電流を利用して,回路解析を		
	インピーダンスとアドミタンス			;	行うことができる。	
	複素電力					
	重ね合せの理				皮相電力,有効電力,無効電力の物理的な	
	— • • •				意味を説明でき、回路より導出することが	
	3. 様々な交流回路(12)				できる。	
	共振回路,相互誘導回路,ブリッジ回路				共振回路やブリッジ回路など各種電気回路	
					の定常解を求めることができる。	
学習内容	[前期中間試験]					
	試験返却・解説(1)		• ;	線形回路の基本法則について説明すること		
					ができ、回路解析に応用することができ	
	4. 線形回路の基本法則(14)				る。	
	相反定理					
	補償の定理					
	テブナンの定理	E				
	ノートンの定理	_			2 端子対回路の接続法について説明でき	
	帆足-ミルマン				る。	
					る。 各 4 端子行列と端子電圧,端子電流の関係	
	트 오밴즈 상태병	ž (o)			右 4 端 1 行列 2 端 1 電圧 5 端 1 電流の関係 式を導出でき 7 説明することができる。	
	5. 2 端子対回路				八と等山でき、就切りることができる。	
	Z 行列,Y 行列,					
	二端子対回路の)接続				
	t- t > 1/2 *				3 相交流の利点や特徴について説明でき、	
	6. 3相交流(7)			各結線における線・相電流、線間・相電圧		
	Y結線				の関係を導き出すことができる。	
	Δ 結線					
	対称3相回路					
	前期末試験					
	試験返却・解説					
評価方法	・ 2回の試験結果(中間試験、期末試験)の平均点を評価とする。					
ат шилла	・ 説明, 証明問題では, 数式等を用いて論理的に記述できているかどうかも含めて評価で					
関連科目	電気基礎 Π $(3 \oplus \Pi)$ \rightarrow Π					
教 材	教科書:大下眞二郎,「電気回路」,共立出版					
# *	* この科目は指定科目です。この科目の単位修得が進級要件となりますので、必ず修得して下さい。 ・本科目の単位は、高等専門学校設置基準第17条第4項により認定される。					
備考						
			>10 2.		•	