	平成2								
科目名	特別講義I				担当教員	田中 康弘			
14 11 11	Special Lectures on Engineering I			近山秋兵	(窓口教員:岡田憲司)				
学 年	5	学 期	前	期	科目番号	08236	単位数	1	
分 野	専 門	授業形式	講	義	履修条件		選択		
分学進学習学習財表内内容本本	材料の腐食と劣化についての知識を習得すること る。電気化学反応の基礎となる熱力学を学習し、 電位によって腐食の有無を予測できること(平衡 理解する。実際の腐食機構について8つの分類と			と、鮪と応法には化化ネルき活分を8防大目れ、のお学エピ比化化ネルき活分を8防大標を腐対けぶ。 窓のか 平求ギス。 と、角とになり がのか であります。 と、角とに法 がのか であります。 と、角とに法 	を目標とする。材料の腐食は電気化学反応であ それを元に標準電極電位の成り立ちを理解する。 論)、腐食の進行は電流と関係すること(速度論)を その対処法を学び、防食手段も学習する。 における電位と電流の見方を学ぶ。必要に応じて を学ぶ。参考プリントを配布して説明する。 合格判定水準 正則溶体近似より、自由エネルギーとエントロ ピーの関係を説明できる。理想溶体と正則溶体の 比較から活量を説明できる。 化学平衡定数から反応のギブス自由エネルギー変 化を求めることができる。標準生成ギブス自由エ ネルギーと標準電極電位の関係が説明できる。ネ ルンストの式よりプルーベダイアグラムを説明で				
	前期末試験								
評価方法	・評価の内訳は、授業やレポート課題を含む演習問題への取組みを 20%、定期試験を 80%として評価する。								
学習・教 育目標と の関係	機械工学コースの学習・教育目標との関連 学習項目 1 ~ 4 に対して ②:(B)知識、B-2 機械工学に関連する基礎知識を身につける。								
関連科目	材料学 I (4年) →特別講義 I (5年) ←→材料学 II (5年)、先端材料学 (5年) 材料力学、機械要素設計などとも深い関連がある。								
教 材	講義内容に関する印刷物はその都度配布する。 参考書:「材料の科学と工学3 材料の物理的・化学的性質」(培風館)W.D.キャリスター著 入戸野 修監訳、「金属材料の腐食と防食の基礎」(成山堂書店)世利修美著、「電気化学」(丸善)渡 辺正ら著 等								
備考	本科目は本年度内に単位追認試験は実施できません。								