電気情報工学科 平成25年度

電気情報	工学科						平成25年度	
科目名	情報数学基礎 Computer Mathematics				村上幸一			
学 年	+	期前期	月 履修多	条件	必修	単位数	1	
分 野		業形式 講			3132006	単位区分	履修単位	
学習目標 進め方	目標区分 (B):知識一科学技術の基礎知識と応用力 情報系の科目の基礎となる数系理論、2進数演算、符号化方式、および論理演算について学習し、ディジタル回路やプログラミングの基礎となる2進数を十分に取り扱えるような知識をもつことを目標とする。さらに、論理パズルなどを用いた推論演習を通して論理思考能力を高めることも授業に組み込む。 教科書に沿った講義に加え、プリント配布により重要事項の説明を行う。また、下記に記した演習以外にも小演習を適宜行い理解を深めるよう配慮する。 学習項目(時間数) 学習到達目標 1. 情報分野における基礎知識(2) (1) 全体の授業計画とガイダンス							
	 (2) 計算機技術が社会に与える影響 2. 数系理論(12) (1) 基数変換、2進数による数値表現 (2) 小数の取り扱い (3) 補数を用いた計算 (4) 計算演習 			・ 基数変換ができる。・ 任意の基数で表現された数値の加減算ができる。・ オーバーフローの判断を含めた2の補数の加減算ができる。				
	[前期中間試験](2)							
学習内容	試験返却・解説(1) 3. 論理数学の基礎((1) 論理命題の真理((2) 論理パズルを対	直表表現		与えられた前提条件のもとで、命題論理を 真理値表で記述し、論理問題を解くことが できる。				
	(3) 論理関数の真理(4) 論理演算演習 5. 論理関数の簡単(1) カルノー図により ドントケア項の(3) その他の簡単化(4) 情報数学総合演	による集合表現 代数の基本則とそれを使った演算 数の真理値表表現、加法標準形 算演習 数の簡単化(4) 一図による簡単化 ケア項の取り扱い の簡単化手法			 論理関数の表す集合領域をベン図で表せる。 論理関数をブール代数の基本則を用いて変形でき、与えられた証明問題を解くことができる。 論理関数の真理値表を記述することができる。 カルノー図を用いて論理関数を簡単化することができる。 カルノー図以外の簡単化手法について名称と内容の概要を説明することができる。 			
	前期末試験							
	試験返却・解説(1)							
評価方法	定期試験の結果で総合評価を行う。							
履修要件	特になし。							
関連科目	[情報数学基礎] → 論理回路 → 計算機アーキテクチャ 特に 2 進数、補数表示、カルノー図等は、計算機やディジタル回路技術分野では常識と言われる ほどの基礎知識であり、本科目で十分習熟すること。							
教 材	伊原充博、他 著「ディジタル回路」(コロナ社)							
備考	情報数学では、特に 2 進数の補数に関する理論や計算法をよく知ること、論理思考能力を高めること、および論理関数の変形や簡単化ができることを目指すことから、特にこれらに関する部分は演習を多くし、補足的なプリント配布も行う。							
	1 = 2	, , , , , , , , , , , , , , , , , , , ,						