機械工学科 平成 26 年度

機械工学科 平成 26 年度									
科目	名	材料工学 II Engineering Materials II			担当教員	伊藤・勉			
学	年	5年	学期	後期	履修条件	選択	単位数	1	
分	野	専門	授業形式	講義	科目番号	14131036	単位区分	履修単位	
学習目 進 め		金属材料に共通する基本的性質に関する知識にもとづき、材料の強化機構、マクロな機械的性質と ミクロ組織との関係を材料科学的な側面から理解し、機械の設計に必要な材料選択、許容応力の決 定に応用できる基礎能力を身につける. さらに後半で、鉄鋼材料以外の代表的な非鉄金属としてア ルミニウムおよび銅合金について学習し、時効硬化および固溶硬化に関する理解を深める. 項目ごとに材料および機械的性質の基本について解説し、必要に応じて演習問題を行う. 特に. 「材 料学」では非常に多くの専門用語が出てくるので、その定義、意味を言葉だけでなく図、写真、表な							
		どのプリントを配布して説明する.							
学習内容		学習項目(時間数) 1. 加工や熱処理と金属の機械的性質(14) (1) 金属材料の強さと靭性 (2) 加工硬化 (3) 固溶強化 (4) コットレル効果による強化 (5) 析出硬化・時効硬化 (6) 結晶粒微細化による強靭化 (7) マルテンサイト変態による強靭化 (7) マルテンサイト変態による強靭化 (2) 軽金属材料(アルミニウム合金 (2) 非熱処理型アルミニウム合金 (3) 熱処理型アルミニウム合金 (4) 青銅および特殊黄銅 (4) 青銅および特殊黄銅 (5) 高減衰能および耐熱銅合金			一般に行よておいています。一般におり、説金で・明・て料るを理の純い、平しいには、平しいには、中では、中では、中では、中では、中では、中では、中では、中では、中では、中で	学習到達目標 ・金属材料の強さと靭性を向上するために、現在一般に行われている加工や熱処理の方法と仕組み、および、それらの機械的性質への影響について説明できる。・金属材料の微視的な変形メカニズムについて説明できる。 ・学習・教育目標との関連(B)知識 ・各種アルミニウム合金の特徴や利用目的について理解し、平衡状態図・ミクロ組織にもとづき材料の強化機構との関連について説明できる。・純銅、各種銅合金の特徴や利用目的について理解し、平衡状態図・ミクロ組織にもとづき材料の強化機構との関連について説明できる。・純銅、各種銅合金の特徴や利用目的について理解し、平衡状態図・ミクロ組織にもとづき材料の強化機構との関連について説明できる。			
		後期末試験				学習・教育目標との関連(B)知識			
		試験返却 (1)							
評価方	i法	・評価の内訳は、レポート課題を 20%、定期試験を 80%として評価する. ・評価の重みづけは、学習項目の 1 章、(2 章、3 章) に対してそれぞれ 50%とする.							
履修要	件	材料工学 I もしくはそれと同等の知識を修得していることが望ましい.							
関連科	目	<u>材料工学 I (4年)</u> →材料工学 II (5年) 材料力学,機械設計製図,CAD,機械要素設計などとも深い関連がある.							
教	材	教科書:宮川大海:「金属材料工学」,森北出版 参考書:矢島悦次郎,市川理衛,古沢浩一:「若い技術者のための機械・金属材料」,丸善など.							
備	考	教科書,関数電卓を授業に必ず持参のこと. 各章毎にテキストを配布するので,各自でファイルに綴ること.							