科目名	電子デバイス			担当教員	辻 琢人, 矢	木正和			
学年	電通専攻2年	学期	後期	履修条件		単位数 2			
分野	専門	授業形式		科目番号	·	- L M 2			
73 21				1	l .	ハると言って過言では			
学習目標	電子デバイスおよび光デバイスは、今日の科学技術発展の基礎を成していると言って過言ではない。この科目では、半導体デバイス中でも特に MOS 電界効果トランジスタ(FET)、発光ダイスード、レーザダイオードの原理・構造・特性などを理解することを目的とする。そして、これら								
1601									
	「「、 レーリタイオートの原理・構造・特性などを理解することを目的とする。そして、 について定性的に説明できるようになることを目標とする。								
	第1部(担当:辻)では半導体電子デバイスでも特に重要な MOS FET について, 理想 MO								
進め方									
	構造を基にして、MOS 表面での現象、表面ポテンシャル分布、およびその動作原理をおもに輸講形式で講義を進めながら詳説する。								
	講形式で講義を進めなから詳説する。 第2部(担当:矢木)では発光デバイスを中心にそれらの基本構造や動作原理を説明し、さら								
	第2部(担当: 天不) では発元) ハイスを中心にてれらり基本構造や動作原理を説明し、さに開発の技術や状況を解説する。興味を持ってこの分野を俯瞰できるよう心がけて進める。								
 履修要件									
腹形女计	電子情報工学コースの者は、専攻科1年後期 学習項目(時間数)			仮 別「 内 付 工	学習到達目標				
	(第1部)担当:辻		女(人)		于日封廷				
	(第1品) 担当・U 1. 理想 MOS 構造と		(9)	理相の	MOC 株坐な甘に	MOS 表面で起きてい			
	2. MOS 表面のポテンシャル分布(2)				と理解する	*			
	3. 実際の MOS 構造			衣曲かり	ンンヤル万年を埋	!解する D2:1, D3:1			
	4. MOS C-V 特性(2)			MOGE	アの動作医理ナー	ラルゼー バント回ナ 圧			
	5. MOS FET の動作		(0)			ネルギーバンド図を使 Po:1 Po:1			
	6. MOS FET の電圧		(2)			D2:1, D3:1			
		7. MOS インバータ(2) MOS インバータ回路の動作原理							
学習内容	8. 第1部の試験と					D2:1-3, E3:1, D3:1			
子首内谷	(第2部)担当:矢		日 石 駐 地(a) 🔻 V. Fi	ノー・ハルトッド・	ボガノナ ドの世十			
	9. 発光ダイオード			· ·		ーザダイオードの基本			
	10. レーザダイオー		(五(2)	博垣と男	か作原理を簡単に説				
	11. ホモ接合とヘテ		が生の益素	+ + >	との子が牡果、牡油	D2:1·3, D3:1			
	12. 共振器, ストラ			x /L, ~	その主な特性・特徴				
	レーザダイオート 13. 発光素子の開発,			水 本 -	7 の 即 タタ ノァ	D2:1, D3:1 Eな技術や開発の現状			
	13. 発光系子の開発。 14. 発光デバイスの				Fの開発に必要なョ flっている	Eな技術や開発の現状 D2:1, D3:1			
	意義・波及効果・				H-2 (1.2)	D2·1, D3·1			
					ノオードの甘木樓と	生し動作百冊を簡単に			
	15. ホトダイオードの構造と動作(2) 16. 第2部の試験(後期期末試験)(1)				ホトダイオードの基本構造と動作原理を簡単に 説明できる				
	10. 分 2 时 7 时 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	区为为小叶	(1)	_{mr.91} C c	: 'a	D2·1 5, D5·1			
 評価方法									
		第1部の試験および第2部の試験(後期期未試験)の成績 90%, 輪講における字質報告および レポート 10%の比率で総合評価する。							
		レホート10%の比率で総合評価する。 試験では,電子デバイスの原理・構造・特性などを理解できているかを評価する。							
関連科目	輪講における学習報告、およびレポートでは、学んだ知識が整理できているかを評価する。 電子物性、材料工学、集積回路工学								
教材				一学」コロナギ	<u></u> + 自作テキスト				
17.10		教科書: 佐藤勝昭 他著「応用電子物性工学」コロナ社、自作テキスト 参考書: S. M. Sze 著 「Physics of Semiconductor Devices」 John Wiley & Sons 社							
	参与者: S. M. SZE 有 「Physics of Semiconductor Devices」 John Whey & Sons 社 岸野正剛 著 「半導体デバイスの物理」 丸善								
			-辱体ナハイノ kから学ぶ半導	_					
 備考	サになし	. 有 「 位	5かり子か干費	*ドノハイ 人」	_子」 哈光星				
川つ	かによし								