科目名	ロボット工学			担	当教官	木下敏治			
 学年	電子5年	学期	通年	-		選択		単位数	2
 分野	専門	授業形式	<u> </u>	_	目番号	+	10		履修単位
	電子工学の基礎的		1						
学習目標	ット工学を履修させ、境界領域への応用力を養う。ロボット工学とその背景について簡単に								
		ニズム、制御(執筆者 高瀬国克 電気通信大学大学院情報システム研究科)							
	というロボットの基本構成技術について述べる。								
	重要な内容はパワーポイントと OHP にまとめて講義するので必ずノートを用意しておくこと。								
進め方	必要に応じてプリン	/トを配る(おくこと。						
	応用の観点からロボット学会の研究論文の中で人間支援の分野(福祉用など)を								取り上げ,ロ
	ボット技術の応用現状、開発状況が詳細にわかるように講義する。								
履修要件	特になし								
	学習項	目(時間	数)			学	習到達	目標	
	1. ロボットとは			(2)	ロボット	トとは何かを	と理解す	- る	D2. 1
	2. ロボットの種	類		(2)	人のよう	うな機械とい	ハう目も	票の下に	ロボットを造
	3. 知能ロボット			(2)	ろうとっ	すると, 知能	能ロボ	ットが必	要であること
	4. オートメーシ	ョンとロ	ボット	(2)	を理解す	ナる			D2. 1
	5. 座標系と自由	度		(2)	産業用ロ	コボットアー	ームは-	その動作	形態から4種
	6. 座標変換マト	リクス		(2)	類に分類	頁されること	と理解	解する しょうしょう	D2. 1
	7. 演習問題			(2)					
	8. 前期中間試験			(1)					
	9. ロボットの位	置姿勢の	解析	(2)	座標変技	奥マトリクン	スを用い	ハてロボ	ットハンドに
	10. ロボットの速	度・加速	度解析	(2)	把持され	れた物体の 値	立置姿勢	勢がどの	ように表現さ
	11. ロボットの角	速度・角	加速度解析	(2)	れるかを	を理解する			D2:1.2
	12. ロボットの静	力学的解	析	(2)	ハンド	こ把持された	た物体の	の速度と	加速度の数学
	13. ロボットの動	力学的解	析	(2)	的表現は	こついて理解	解する		D2:1.2
学習内容	14. ロボット位置	姿勢総合	シンセシス	(2)					
	15. 前期末試験			(1)					
	16. 試験問題の解答			(2)					
	17. 駆動アクチュエ			(2)					として、電気
	18. モータ駆動増幅	話器		(2)				トルクの	ラプラス変換
	19. 減速機			(2)	形につい	ヽて理解する	5		D2:1-3
	20. サーボ系のブロ			(2)					
	21. ロボットの制御			(2)				関節サ	ーボを構成で
	22. 速度制御系	位置制御	系	(2)	きること	とを理解する	5		D2:1-3
	23. 演習問題			(2)					
	24. 後期中間試験			(1)					ロボット全体
	25. 自由度系の制	御アルゴ	リズム	(2)			た動きる	を実現で	きるかという
	26. 軌道の生成			(2)		里解する			D2:1.2
	27. 作業座標系サ			(2)					きをテレビカ
	28. カベクトル生成			(2)					を手先座標系
	29. 速度ベクトル生			(2)		速度や回転過	速度で』	与える制	御方式を理解
	30. 加速度ベクトル	/生成によ	る方法	(2)	する				D2:1.2
	31. 演習問題			(2)					
	32. 学年末試験		<u>-</u>	(1)					
== /=	33. 試験問題の返却:			(1)	- 4N A ==	年 1-7	2 N⊞A ⊃- 1	- > IH A	1 .17
評価方法	定期試験80%, ノート,演習問題,宿題20%の比率で総合評価する。再試験を行う場合もある。								
	試験では,基本的な問題が解けるか,やや複雑な問題が解けるかを評価する。								
	ノート,演習問題,宿題では復習が出来ているかを評価する。 ************************************								
関連科目	制御工学,数学,応		F	- 227 >	2 a ± F		1 41 /=	· → [+ := :=	(=));
教材	教科書: 辻 三郎 他著 「ロボット工学とその応用」 コロナ社(電子情報通信学会) 参考書:吉川 恒夫 著 「ロボット制御基礎論」 コロナ社								
		者	「ロホット制	御基品	楚論 」	コロ	ナ社		
備考	特になし								