 科目名	化学			担当教	当教員 笠井健吉				
学年			通年	履修条件		必修単位数			
 分野	一般	授業形式	講義	科目番			単位区別	2 履修単位	
学習目標	酸化・還元の知識から電池,電気分解現象を理解させ、その後、反応一般論として化学平衡の法則を教授する。して1年次既習の酸・塩基反応等々の反応理由をこの化学平衡の法則から理解させる。陽イオン分析実験を通して、既習の化学知識、そして実験技術の実際的体得を促す。有機化学に関しては、有機化合物の体系的把握をさせ、その性質、反応性が主として各種官能基、結合種、分子構造によって定まっていることを理解させる。また、分子については、この有機化合物の体系的把握をさせる中で、同時に紹介、理解させる。								
進め方	検定教科書を批判的に読み進め、講義ノート中心に講義を進める。想像しがたい事物、事例については演示実験、実際に見せる、あるいは学生自身が副教材である化学図解を参照しながら理解する。学生実験は以下の学習内容に示すとおりである。								
履修要件									
	学習項目		(時間	数)		学習到達目標			
	1 酸化・還元の定義			(2) 電	子授受による定義付け	†を理解させる。	ı	D1:3	
	2 酸化数定義の必要	生		(2)					
	3 酸化剤・還元剤の2	定義		(2)					
	4 酸化・還元反応式の導出			(2) 融	酸化剤,還元剤の反応式導出,及びそれらより酸化 D1:3				
	5 酸化・還元滴定実験				還元反応式が導出できるようにする。				
	6 前期中間試験			(1)					
	7 イオン化傾向			(2)					
	8 電池の形成条件			(2) 電	池と酸化還元反応との	関係を理解さ	せる。	D1:3	
	9 ダニエル電池			(2)					
	10 乾電池、蓄電池			(2)					
	11 電気分解			(2)					
	12 フアラデー定数・1	電子の電荷測定	官実験	(2) フ	アラデー定数の実測が	らイオン,電	子の体験的理	D1:3	
	13 前期期末試験			(1) 严	をさせる。				
学習内容	14 反応速度			(2)					
	15 化学平衡の法則・ル・シャトリエの原理		ェの原理	(3) 亚	 平衡移動という観点から,種々の反応の反応理由が D1:3				
	16 溶解度積				られることを理解させ				
	17 化学平衡の法則から反応理由の理解		里解	(2)					
	18 緩衝溶液			(1)					
	19 10種陽イオン分析実験			(8)	これまで学習してきたことをでき得る限り, 実体駆させる。		限り,実体験	D1:3	
	20 後期中間試験			(1)					
	21 有機化合物の分類			(2) 有	機化学を炭化水素を元	こに体系的に理解	解させる。	D1:3	
	22 元素分析・分子式	央定法		(2)					
	23 構造式決定法			(2)					
	24 炭化水素の3次元	構造と性質・月	反応性	(5)					
	25 過マンガン酸カリ	散底酸化反応		(2) 化	学的構造決定法の一と	して理解させる	る。	D1:3	
	26 各種官能基の性質	・反応性		(2)					
	27 芳香族の性質・反	芯性		(2)					
	28 高分子の形成とそ	の性質		(2)					
	29 学年末試験			(1)					
	30 試験返却			(1)					
評価方法	中間,及び定期試験結果を重視する。試験問題はノート重視に作成する。陽イオン分析についてはイオン1 個4点,レポート30枚以上で30点,後期中間試験は実験に関する問題で30点,計100とする。また,授業態度は総合評価の根拠とする。								
関連科目	数学,物理学								
教材	1. 検定教科書:精解化学 I (数研出版), 化学 II (数研出版), 2. スクエア最新図説化学 (第一学習社)								
備考	注意;学年末試験を除く各試験範囲は学習項目順に従うが,授業進度は試験範囲に先行する。								