専攻科						Ψ	成22年度	
科目名		ソフトウェア工学概論 General Software Engineering			担当教員 宮武明義			
学 年	2 年	Software Engir 学期	eering 後期	履修条件	 選択	単位数	2	
分 野	専門	授業形式		科目番号	10AC2 30120	単位区別	 学修	
刀 玎	サアコ 投来形式							
学習目標								
進め方	前半は、講義形式で行うが、後半は数人でグループを組んで UML を使ったアプリケーションの設計を行う。最後に JAVA または Visual Basic を用いてプログラムを作成し、グループごとに作成したアプリケーションの評価を行う。							
学習内容	学習項目(時間数)				学習到達目標			
	1. ソフトウェアコ	ソフトウ:	ソフトウェア工学の目標や対象を理解する。 D2:1					
	2. オブジェクト指向とは (2)			オブジェ	オブジェクト指向とは何かを理解する。 E2:1			
	3. オブジェクト指向プログラミング (00P) (2)			00P (こつ)	00P について学ぶ。 E2:1			
	4. UML 入門 (2)			UML とは作	UML とは何かを学ぶ。 E2:1			
	5. LML ダイアグラムの種類 (2)			UML のダイ	UML のダイアグラムの種類と役割を学ぶ。 E2:1			
	6. UML ユースケース図, 演習 (2)				UML のユースケース図, クラス図, シーケンス図を理解 し, 練習問題を図解する。 E2:2, E3:1			
	7. UML クラス図,							
	8. UML シーケンス図, 演習 (2)9. システム分析 (2)10. 設計 (4)			押期の両	課題の要求を分析し、ユースケース図、クラス図、 シーケンス図などを使って設計できる。 E2:3			
	11. 実装 (6)			TAVA また	JAVA または Visual Basic で実装,デバッグできる。 E4:1 実装されたアプリケーションの評価を行う。 E4:2			
	11. 关数 (6)			JAVA & /CI				
	12. 評価 (2)			実装される				
					以上前半は講義を行い,後半はグループによる協同作 業での演習を行う。 D5:1			
	後期末試験							
	13. 答案の返却と	試験問題の解答	(2)					
評価方法	定期試験 70%,レポートを 30%の比率で総合評価する。							
履修要件	電子通信システム専攻で電子情報工学プログラムの履修者は、1年前期「アルゴリズムとデータ構造」を履修し							
	ていること。 情報制御システム専攻で電子情報工学プログラムの履修者は、1 年前期「アルゴリズムとデータ構造」と「オブ							
	ジェクト指向プログラミング」を履修していること。							
関連科目	ソフトウェア設計論(本科 3 年) → 情報構造論(本科 4 年) → アルゴリズムとデータ構造(1 年) オブジェクト指向プログラミング(1 年)							
教 材	教科書:鈴木正人著「ソフトウェア工学」サイエンス社							
備 考	特になし							
	•							