通信ネットワーク工学科 平成 26 年度								
科目名	システム工学 System Engineering			担当教員	田嶋 眞一			
学 年	5年	学期		履修条件	選択	単位数	2	
分 野	専門	授業形式	講義	科目番号	14235054	単位区別	履修	
学習目標進め方	システムの概念,システム工学のアプローチ方法,線形計画法や動的計画法などの最適化手法,学習目標システムの信頼性,保全性の評価方法,社会システムや生態システムにおける動的モデル解析手法,最新の情報ネットワークシステムなどのシステム概念について、その考え方と方法論の基礎を習得する。 教科書を基にシステム工学で使われるシステム分析,システム設計の基礎概念と基本的手法について講義した後,例題を用いて説明する。練習問題についてはレポート課題とするので、各自自習しておくこと。確認の							
	意味での小テストを適宜実施する。							
学習内容	学習項目(時間数) 1.システム工学の基本概念(4) (1)システム工学のアプローチ方法 (2)システム工学の応用と展開 2. システムの最適化手法(14) (1)線形計画法 (2)シンプレックス法 (3)シンプレックス表 (4)動的計画法 (5)最適経路問題 (6)配分問題 I (7)配分問題 II [前期中間試験](2) 3.試験問題の解説(2) 4.システムの待ち行列(6) (1)客の到着とサービスの記述 (2)窓口 1 個の待ち行列 (3)窓口複数個の待ち行列 (3)窓口複数個の待ち行列			解する。 システム(を理解する) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	の概念とシスラの最適化手法とる。	習 到達目標	D2:1 法,動的計画法 D2:2	
	前期末試験 5. 試験問題の解説(2) 6.システムの信頼性・保全性・安全性(14) (1)システムの信頼性 (2)信頼性の計算 (3)システムの保全性 (4)システムの安全性				システムの信頼性や保全性を数値的に評価する方法を 理解する。 D2:2			
	7.試験問題の解説(2) 8. 動的モデル解析(10) (1)伝染病の伝搬モデル (2)生態系モデル (3)ランチェスタモデル					ステム等の動的な る手法を理解す		
	後期末試験 9.試験問題の解説(2							
評価方法	中間試験・期末試験を70%、レポート・小テストを30%の比率で評価する。							
履修要件	基礎的な確率・統計手法を修得している者							
関連科目	確率統計(4 学年)							
教 材	教科書:添田喬,中溝高好著「システム工学の講義と演習」日新出版							
備考	わからないことは,授業中適宜質問すること。オフィスアワーは,月曜 16:30~17:00 であるが, E-mail[tashima@es.kagawa-nct.ac.jp]で予約することが望ましい。							