電子システム工学科 平成 26年度

電子システム工学科 平成 26年度							
科目名	ロボット工学 Robot Engineering	担当教員	木下敏治				
学 年	4年 学期		履修条件	選択	単位数	2	
分 野	専門 授業形式	講義	科目番号	14236024	単位区別	履修	
学習目標進め方	電子システム工学の基礎的知識をすでに修得した学生を対象に,応用的色彩の濃いロボット工学を履修させ, 境界領域への応用力を養う。ロボット工学とその背景について、知能ロボットやオートメーションとロボット およびロボットのメカニズムについて丁寧に講義をする予定である。5年のロボット工学 を理解するための基 礎的内容を学習する。 重要な内容はパワーポイントとホワイトボードにまとめて講義するので必ずノートを用意しておくこと。必要 に応じてプリントを配るのでファイルを用意しておくこと。応用の観点からロボット学会の研究論文の中で人						
	間支援の分野(福祉用など)を取り上げロボット技術の応用現状,開発状況が詳細にわかるように講義する。						
学習内容	学習項目(時間数) 1. ロボットとは・ロボットの種類(2) 2. 知能ロボット (1)システム構成(2) (2)知能ロボットの基本課題および発展(2) 3. オートメーションとロボット (1)フレキシブルオートメーション(2) (2)オートメーションとロボットの役割(2) (3)産業用ロボット技術(1) (4)こらからのロボティックス(1) [前期中間試験](1) 4. 答案返却・解答(1) 5. ロボットのメカニズム(1) 6. 座標系と自由度(2) 7. ロボットの運動と力学的解析 (1)座標変換マトリクス(2) (2)ロボットの位置姿勢の解析(2) (3)ロボットの速度・加速度解析(2) (4)ロボットの速度・角加速度解析(2) 前期末試験 8. 答案返却・解答(1) 9. (5)ロボットの静力学的解析(2)		 人す 産類オ	学習到達目標 ロボットとは何かを理解する D2:1 人のような機械という目標の下にロボットを造ろうとすると、知能ロボットが必要であることを理解する D2:1 産業用ロボットアームはその動作形態から4種類に分類されることを理解する D2:1 オートメーションとロボットの関係を理解する D2:2 座標変換マトリクスを用いてロボットハンドに把持された物体の位置姿勢がどのように表現されるかを理解する D2:12 ハンドに把持された物体の速度と加速度の数学的表現について理解する D2:12 ハンドに把持された物体の角速度と角加速度の数学的表現について理解する D2:12 ハンドに把持された物体の角速度と角加速度の数学的表現について理解する D2:12			
	(6) ロボットの動力学的網 10. 例題による 3 自由度多関節 11. ロボットの位置姿勢の逆運 12. 演習問題(2) [後期中間試験](1) 13. 答案返却・解答(1) 14. ロボットの駆動伝達機構 (1) アクチュエータと減返 (2) 運動伝達機構・関節部 15. 把持機構・移動機構 (1) 車輪式移動ロボット(2) 脚式移動ロボット(2) (3) キャタピラ式移動ロガ	ロボットの解析(2) 動学(3)	 ロボット 駆動源 かさ歯車 平行直動 3輪や4	の位置姿勢の逆道の各種アクチュスと必要トルクにはる関節の通り 前開閉機構や三指/ 輪の走行と旋回機 ボットの脚機構	ニータの特徴を学ぶ こついて学ぶ O抜けを学ぶ (ンドを学ぶ 機構を学ぶ	D2:1-3 D2:1-2 D2:1-2 D2:1-2 D2:1-2 D2:1-2	
	` ,	ハット (2)			4021/15-1-121	<u>D2.1 2</u>	
	後期末試験 15. 答案返却・解答(1)		\dashv				
評価方法	4回の定期試験および再試験の結果で総合評価する。 試験では,基本的な問題が解けるか,やや複雑な問題が解けるかを評価する。 ノート,演習問題,宿題では自主的に学問する態度を身につけ実力を向上させるため作成してもらう。						
履修要件	特になし						
関連科目	応用物理 (3),数学解析(3),微分積分学(3)電子回路 (3)						
教 材	教科書:辻三郎他著「ロボット工学とその応用」コロナ社(電子情報通信学会) 参考書:吉川恒夫著「ロボット制御基礎論」 コロナ社						
備考	特になし						
	· · · · · · · · · · · · · · · · · · ·						