通信ネットワーク工学科 平成 27 年度

通信ネットワーク工学科 平成								
1.1 D 2	ディ	10 1/1 1/1 0						
科目名	Digital Circuits I			担当教員	世 当教員 塩沢 隆広			
学 年	2年	学 期	通年	履修条件	必修	単位数	2	
分 野	専門	授業形式	講義	科目番号	15235004	単位区別	履修	
学習目標	計算機科学の基礎の一つであるブール代数とその電気回路的な実現である論理回路の関係を、数学的概念と 物理実現の対応として理解する。具体的には、情報と電気信号の対応、組み合わせ論理回路、順序回路を理解 する。							
進め方	ディジタル回路の基礎となる2進数と符号の表現法、ANDやORなどの論理演算,組合せ回路の設計法と順序回路の代表例としてフリップフロップ,カウンタなどについて講義する。これにより論理回路の基礎理論を習得する。また、論理回路の基礎的な設計法を学ぶ。演習と小テストを適時行う。							
	学習項目(時間数)				学習到達目標			
学習内容	1 10 進数と 2 進数, 16 進数 (整数, 少数) (2) 2 基数変換(2) 3 2 進数と 16 進数の加減算(2) 4 補数加算, 負数の補数表示(2) 5 符号と符号の誤り検出(2) 6 集合論と命題論理(2) 7 ブール代数の基本演算と論理ゲート(MIL 記号)(2) [前期中間試験](1) 8 加法形と乗法形(2)			理解し, 符号の基 ブール代 基本的な プール代	2 進数, 16 進数, 基数変換, 加減算を 理解し, 基本的な問題が解けること。 D1:2 符号の基本的な問題が解けること。 D1:2 ブール代数を理解し, 基本的な問題(論理式と演算)が解けること。 D1:2 ブール代数の法則を理解し,			
	9 真理値表と標準形(2) 10 展開定理 (Shannon 展開) (2) 11 カルノー図による簡単化 I (2) 12 カルノー図による簡単化 II (2) 13 カルノー図による乗法形の簡単化(2)			論理式か 論理式と	真理値表から標準形を導けること。 論理式から真理値表を作成できること。 論理式と論理回路図を相互に変換できること。 また,基本的な問題が解けること。 D1:2			
	14 冗長項を用いた簡単化(2) 前期末試験			論理関数	論理関数の簡単化ができること。 D1:2			
	15 簡単化の応用(2) 16 組合せ回路(1) 17 回路構成の変換(1) 18 加算器(2) 19 減算器, その他の組合せ回路(2) 20 エンコーダ(2) 21 デコーダ, 符号変換器(2) 22 マルチプレクサとデマルチプレクサ(2) [後期中間試験](1)			基本的な	各種組合せ回路を理解し、 基本的な組合せ回路の設計ができ、 基本的な問題が解けること。 D1:2			
	23 SR-FF と状態遷 24 状態遷移図,タ 25 JK-FF(2) 26 D-FF, T-FF(2) 27 レジスタ,カウ	イミングチャー ンタ(2)		状態遷移	状態遷移表,特 図,タイミング・ ,基本的な問題	チャート	D1:2	
	28 カウンタの設計 29 論理回路の実際 後期末試験 30 試験問題の解答	(2)			回路を理解し, 順序回路の設計:	ができること。	D1:2	
評価方法	定期試験(60%), 小テスト(10%), レポート・ノート(30%)の比率で評価する。							
履修要件	特になし。							
関連科目	コンピュータネットワーク I (4 年) \to コンピュータネットワーク II (5 年) 論理回路設計 (5 年)							
教 材	教科書: 堀桂太郎 著 「ディジタル電子回路の基礎」東京電機大学出版局,関連プリント							
備考	オフィスアワー: 毎水曜日放課後~17:00							