電子情報通信工学専攻 平成 28 年度

電子情報通信工学専攻 平成 28 年度								
7.1 D 5	システム制御工学			10.11.41.0	10000000000000000000000000000000000000			
科目名	System Control Engineering			担当教員	小野安季良			
学 年	2年	学期	mig 前期	履修条件	選択	単位数	2	
分 野		授業形式	講義	科目番号	16273018	単位区別	 学修	
/J ±1	* * * * * * * * * * * * * * * * * * * *						4	
学習目標	最近制御工学の応用範囲がますます広がり、その基本的知識がエンジニアにとって必須のものに なっている。本授業では、フィードバック制御理論について講義と演習を行い、対象となるシステ							
丁日口际	なりている。本域来では、フィードバック制御系が設計できることを目標とする。							
進め方	数科書に基づき、フィードバック制御理論について講義を行う。その際、具体的なイメージが湧く							
	ように簡単な電気回路や機械系の例を挙げて解説する。また、学習項目での過渡応答や周波数応答							
	では、応用数学のラプラス変換や複素数に関する知識が不可欠であり、復習をしながら学習を進め							
	る。							
	学習項目(時間数)				学習到達目標			
学習内容	1. ダイナミカルシステムの表現(8)			簡単な電気	簡単な電気回路や機械系の例を挙げ、多くの制御対象			
	(1)フィードバック制御とは何か				が微分方程式で記述できることを理解する。 <u>D2:2</u>			
	(2)ダイナミカルシステムの表現			制御対象の	制御対象の入出力関係に着目し、微分方程式より簡単			
	(3)伝達関数				な表現(伝達関数)でシステムが記述できることを理			
	(4)ラプラス変換による応答解析			解する。	解する。 <u>D2:4</u>			
	2. ブロック線図(4)			ブロック紀	ブロック線図により、複雑な構成の制御系でも、簡単に伝達関数が求まることを理解する。 <u>D2:2</u>			
	3. 過渡応答(6)				過渡応答とは何かを理解し、代表的な系における過渡 応答を解析できる。 <u>D2:3</u>			
	(1)インパルス応答・ステップ応答			応答を解れ				
	(2) 1 次系 (3) 2 次系							
	(3) 2 VOR							
	4. 安定性(4)				伝達関数の極・零点の配置による安定性を理解対象の			
	(1)極・零点				安定・不安定を判別できる。ラウス、フルビッツの安定判別法を理解できる。 <u>D2:3</u>			
	(2)ラウスの安定判別法			定判別法				
	(3)フルビッツの安定判別法							
	5. 定常偏差(2)							
	.,			担制財化	根軌跡とは何かを理解し、制御系の極の変化を図式的			
	6. 根軌跡(4)				(権利)がとは何かを理解し、制御系の極の変化を図れば に描くことができる。 D2:2			
				(0) (0)	<u>DE7</u>			
	7. 周波数応答(4)			周波数応	周波数応答を学んだ上で、制御系の周波数特性を図式			
	(1)ベクトル軌跡			的に示す	的に示す代表的な方法を理解する。 <u>D2:3</u>			
	(2)ボード線図							
	- ΛπΔ <i>E</i> -1-αΗ:-λ-Δ-							
	前期末試験							
	8. 試験問題の解	答(1) 						
評価方法								
	演習課題 30%, 定期試験 70%の比率で評価する。 総授業時間数の3分の1を超えて欠課した場合, 評価は0点とする。なお, 遅刻3回で欠課1時間とみなす。							
	เมื่อสามายาส २००० । हिन्स विकास							
	特になし							
履修要件								
関連科目								
#4- ++	 教科書:杉江俊治,藤田政之著 「フィードバック制御入門」コロナ社							
教 材 	秋付音・1241次付,膝田以之者 「ノイートハツク制御ハFT」コロナ任							
備考	オフィスアワー:毎週木曜日 16:00~17:00							