							平成23年度	
科目名	応用物理 I Applied Physics I			担当教員	岩田 弘			
学 年	3	学 期	通年	科目番号	09201	単位数	2	
分 野	専門	授業形式	講義	履修条件		必履修		
学習目標	力学の基礎理論とその導出過程を理解することにより、物理学的思考能力を身につけるとともに、機械工学への応用能力を身につける.							
進め方	教科書を重視する. 基本的には教科書に沿って基礎的事項の解説を行い、演習問題を行うことなどで理解を定着させる.							
学習内容	学習項目(時間数)			合格判定水準				
	1. 物理の基礎(2) (1)ガイダンス (2)物理量,次元,単位 2. 質点にはたらく力と運動(12) (1)力の表し方とベクトル (2)運動の表し方 (3)運動の法則 (4)簡単な力と運動 前期中間試験(2)			・物理量が持つ次元を理解し、次元解析ができるとともに単位系を理解している。 ・1次元運動での位置,変位,速度,加速度の表現ができる。ベクトルの基本演算ができ、ベクトルを用いた表現での物体の運動を理解している。 ・質点にはたらく力,運動,運動の法則について理解している。 ・ニュートンの運動法則を理解し、簡単な物体の運動方程式が記述でき、それを解くことができる。				
	3. 仕事とエネルギー(14) (1)仕事と運動エネルギー (2)位置エネルギー (3)力学的エネルギー保存の法則 前期末試験(2)			・仕事と力学的エネルギーの関係が理解でき、運動エネルギーとポテンシャルエネルギーの関係についても理解している. ・エネルギー保存則を用いて運動の問題を解くことができる.				
	4. 運動量保存の法則(10) (1)運動量と力積 (2)衝突 5. 振動(4) (1)単振動など			説明し、解く・単振動につ	・運動量を理解し、はねかえり係数を考慮した衝突問題を説明し、解くことができる. ・単振動について理解し、この運動方程式を記述するとともに、解くことができる.			
	後期中間試験(2)			<u> </u>				
	6. 等速円運動(4) 7. 平面運動の極座標表示(4) 8. 見かけの力(4) 9. 総合演習(2) 後期末試験(2)			・等速円運動について理解している. ・角運動量保存の法則を理解している. ・慣性力や遠心力,コリオリカなど見かけの力について理解している.				
評価方法	・評価の内訳は、演習課題の採点成績を20%、定期試験結果を80%とする. ・学習項目ごとの全体評価への重みは、1と2、3と4、5と6~9について、それぞれ25%とする。 ・試験や演習課題では、答の正誤だけでなく、考察の内容を特に重視する.							
学習・教 育目標と の 関 係	全ての学習項目に対し ②:(B)知識							
関連科目	物理・同実験(2 年) → 応用物理 I (3 年) → 応用物理 II (4 年) 基礎力学(2 年)							
教 材	教科書:高橋正雄著 「工科系の基礎物理学」 (東京教学社)							
備考								
Ī.								