			. III d./ . →III कर					十九以	12 4年度		
科目	名		用物理Ⅱ ed Physics	II	担当教員	≌数員 橋本良夫					
学	年	4	学 期	通年	科目番号	09202	単位数		2		
分	野	専門	授業形式	講義	履修条件		必履修	,			
学習目標		質点系・剛体の力学の基礎理論とその導出過程を理解することによって、物理学的思考能力を身につけるとともに、機械工学への応用能力を身に付ける.連続体としての弾性体と流体の基礎を理解する. 教科書に沿って基礎的事項の解説を行い、演習問題を解くことで理解を定着させる.									
進め	方	が口目で出って出	X II II II C	WEELT COCKETTE CO.							
		学習:		合格判定水準							
		0. ガイダンス(1)				授業の進め方、評価方法等についてシラバスを用					
		1. 剛体に働く力(5)				いて説明する. 剛体のつり合い条件を理解し、重心の位置を計算					
		1. 剛浄に働く刀(3) (1) 力のモーメント				画体のプリーで、条件を理解し、重心の位置を計算することができる。					
		(2) 剛体のつり合い条件			, 500,						
		(3) 重心の計算									
		2. 質点系の運動方		ベクトル表記による質点系の運動方程式を求めることができる. 簡単な質点系の運動を計算するこ							
		(1) ベクトルの外積									
		(2) 力のモーメントと角運動量 (3) 重心の運動			とかでき	とができる.					
		(4) 質点系の回転	運動								
		「前期中間試験](2)	AL 294								
		3. 固定軸を持つ剛	体の運動(7)		剛体の慣	剛体の慣性モーメントが計算できる。滑車などの					
		(1) 剛体の回転運動の関係式			運動を計	運動を計算することができる.					
学習内	物	(2) 慣性モーメン									
于日内	ם ני	(3) 円形体の回転			1 - AH 1: 2024 (1						
		4. 剛体の平面運動		剛体の平面運動の運動方程式が導出でき、それを 解くことができる. 並進運動と回転運動の運動エ							
		(1) 剛体の平面運動の運動方程式 (2) 剛体の平面運動と力学的エネルギー				解くことができる。 亚連連動と回転連動の連動工 ネルギーを計算できる。					
		前期末試験				C 11 37 C 0	•				
		5. 弾性体の力学(1	ひずみ、	ひずみ, 応力, 弾性, 塑性の基礎的概念, および							
		(1) 弾性定数		ヤング率、ポアソン比を理解できる.							
		(2) ねじれ・たわみ	*		ねじれ,	ねじれ、たわみ等の基本的な計算ができる.					
		[後期中間試験] (2)				-					
		6. 流体の力学(14)			-	圧力,ベルヌーイの定理,粘性,層流,乱流などの基礎的概念を理解できる.					
		(1) 静止流体	の基礎的								
		(2) 完全流体の運動 (3) 粘性流体・表面									
		後期末試験	111271								
		答案返却と解答(1)				+					
		・評価の内訳は、	寅習課題の持			を 80%とする。)				
評価方	污法										
		・試験や演習課題では、答の正誤だけでなく途中の考察の内容も重視する.									
学習•		機械工学コースの学習・教育目標との関連									
育目標と		全ての学習項目に対し									
の関		1 1			科学に関する基礎知識を身につける.						
関連科		応用物理 I (3年) → 応用物理 II (4年) → 振動工学(5年)									
教 ———	材	教科書:高橋正雄著 工科系の基礎物理学(東京教学社)									
備	考	力学の問題では、解くべき方程式が正しく求められれば、ほぼ解けたようなものです.与えられた問題の本質をとらえ、方程式で表現する方法を特に訓練してください.									
		•									