							平成24年度		
科目名	制御工学Ⅱ Control Engineering Ⅱ			担当教員	逸見知弘				
17 11 11				担当教具					
学 年	5	学 期	通年	科目番号	08421	単位数	2		
分 野	専門	授業形式	講義	履修条件		必履修			
	フィードバック制				こ関して学び、		ご計算機を		
	フィードバック制御系のディジタル制御,及び現代制御論に関して学び,技術者に必要な計算機をもちいた制御系設計に関する解析能力,設計能力を養う.								
	・連続時間システムを状態空間表現で表すことができ、システムの安定性・可制御性・可観測性を								
	判別することができ,オブザーバ併合レギュレータを設計することができる. (B-(7), E-(3))								
学習目標	・ z 変換の基本的演算を用いて差分方程式を解くことができる. (B-(3))								
	・連続時間システムの伝達関数からパルス伝達関数を導出することができる.(B-(3), B-(7))								
	・離散時間システムの安定性・可制御性・可観測性を判別することができ、各種正準形に変換する								
	ことができる. (B-(7))								
	・離散時間システムに対するオブザーバ併合レギュレータを設計することができる. (B-(7), E-(3))								
	1. 各項目ごとにその基本的な考え方と理論を教科書に基づいて解説する.								
進め方	2. 具体的な演習問題(Matlab/Simulinkの課題を含む)を学生に解かせる.								
進め万	3. それらの解答に基づき, 再度必要な理論の考え方を解説する.								
	4. 必要に応じて制	御系の応用	ソフトウェア(Matlab/Simulir	ık)を用いたi	演習を行う.			
	学習	3項目(時間	数)		合格	8判定水準			
	0. ガイダンス()	1)							
	1. 状態空間表現と安定性(6)			・システ	・システムを状態空間表現で表すことができ、ま				
	(1) 状態空間表現と伝達関数				たそれらを伝達関数に変換することができる ・伝達関数の極とシステム行列の固有値との関係を示すことができる。 ・システムの可制御性・可観測性について説明でき、その判別を行うことができる。 ・連続時間システムに対する、レギュレータとオ				
	(2) 状態空間表現における安定性			・伝達関					
	(3) 可制御性と可観測性			を示す					
	2. 状態フィードバック制御(7)			・システ					
	(1) レギュレータ (極配置, LQR) の設計			き, そ					
	(2) オブザーバの設計			• 連続時					
				ブザー	ブザーバの設計ができる.				
	[前期中間試験](2)								
	試験答案の返却および解説(1)				・ディジタル制御の基本的構成を説明できる.				
	3. ディジタル制御について(1)								
	4. 連続時間システムの離散表現(6)			1 17 1	・連続時間システムを離散モデルに変換できる				
	(1) 離散化について				・z 変換, 逆 z 変換の計算ができ, 簡単なディジタル信号の z 変換を求めることができる.				
	(2) 連続時間システムの離散時間モデル								
	5. 離散時間システムの解析(7)				・連続時間システムの伝達関数からパルス伝達関数を導出することができる				
学習内容	(1) z 変換			数を導					
	(2) パルス伝達関数								
	前期末試験								
	試験答案の返却および解説(1) 5のつづき(13)			。 肉件共行	かまけました。 カンカー・カンド・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・				
	- , ,	/ステムの字	完 州:	* * * *	・離散時間システムの安定性、可到達性・可制御				
	(3) 離散時間システムの安定性(4) 可到達性と可制御性,可観測性(5) 実現問題と最小実現(6) 正準分解と各種正準形				性,可観測性について説明でき,それぞれについて判別を行なえる. ・離散時間システムを各正準形に変換できる.				
				144	1 H 2 > 1 > 2 - 1	已日亚中///(三叉	1,7 (C 0.		
	(6) 正平万暦 C 存催正平 // (2) [後期中間試験] (2)								
	試験答案の返却および解説(1)								
	6. 離散時間システムの状態フィードバック制			制 ・離散時	・離散時間システムに対する, レギュレータとオ ブザーバの設計ができる.				
	御(13)								
	(1) 離散時間レ								
	(2) 離散時間オ								
	テスト返却と解説								
	後期末試験								
	試験答案の返却は	3よび解説(1))						
評価方法	・各項目について,定期試験の結果を用いて,合格判定水準に達しているかを判断する.								
	・レポート課題がある場合はその試験期の成績に $1 \sim 3$ 割の割合で加味する. (割合は回数、内容に								
	よって異なるので、その都度周知する)								

学習・教育目標と の関係	プログラム指定科目					
	◎B(3):メカトロニクスの基礎となる数学の基礎知識と、物理分野の基本法則を使うことができ					
	る.					
	◎B(7):情報と計測・制御の分野において、自然科学の知識を組合わせ理想化した例題や基本的な					
	工学の例題に適用し、解を得る手順を概説することができる					
	○E(3):制御工学に関する基礎知識を、簡単な機械システムの制御に適用することができる					
関連科目	制御工学 I (4年) → 制御工学 II (5年) → 制御工学特論 I (専 I)					
	電子回路(4年) 制御工学特論Ⅱ (専2)					
教 材	・教科書:相良節夫,和田清,中野和司著					
	「ディジタル制御の基礎」 コロナ社 ISBN4-339-03152-6					
	・教科書:井上和夫監修,川田昌克,西岡勝博共著					
	「Matlab/Simulink によるわかりやすい制御工学」 森北出版 ISBN978-4-627-91721-7					
	・Matlab/Simulink 用配布プリント					
備考	・本授業は、数学(微分積分、線形代数、複素関数論)の内容を多分に含む学問であるため、					
	数学系の科目の復習を行っておくこと.					
	・数学的な式展開, 証明が多い内容なので必ず授業の予習復習を行うこと.					