科目名	計測工学			担当教員	工符//		
17 11 11	Engineerin	g of Instr	umentation	担当教員	11.7相1百 1	CIX	
学 年	5	学 期	前期	科目番号	08424 単位数	1	
分 野	専門	授業形式	講義	履修条件	必履修		
学習目標	寸法の拡大方法,角度を測定する方法, JISで規定されている形状(真直度・平面度・真円度・表面粗さ)の測定法について基本的な原理を説明でき、特殊な機械要素の測定に応用することができる. さらにその内容について記述した専門書を理解・説明できる.						
進め方	 1. 教科書を中心に,項目ごとに解説する. 2. 黒板にはできるだけ図を多く用いて説明する. 4. 授業毎にレポートを課す. 						
学習内容	学習項目(時間数)				合格判定水準		
	 0. ガイダンス(1) 1. 長さの標準(3) (1) 端度器 (2) 線度器 2. 長さの測定における系統誤差(4) (1) 熱膨張による誤差 (2) 測定力による誤差 (3) 幾何学的誤差 3. 拡大(6) (1) 機械的拡大 (2) 光学的拡大 			・ 測定 るこ ・ Abbe ・ 機械	 ・ 測定器を線度器と端度器に分類できる。 ・ 測定時の系統誤差を,原理図を用いて説明することができる。 ・ Abbe の原理が説明できる。 ・ 機械的拡大,光学的拡大について,測定器の構造図があれば,拡大機構を説明できる。 		
	[前期中間試験](2) 試験答案の返却および解説(1) 3. 拡大(つづき)(2) (1) 流体的拡大 (2) 電気的拡大 4. ディジタルスケール(2) (1) 光学式パルススケール (2) モアレじま格子スケール 5. 角度の測定(3) (1) 角度の標準 (2) 角度測定器 6. 形状精度の測定(4) (1) 真直度と平面度 (2) 真円度 7. 表面粗さ(2) 8. 特殊な機械要素の測定(2)			の所 ・ ディき ・ JIS ・ 真を ・ 表 ・ 三針	 流体的拡大、電気的拡大について、拡大方法の原理を説明できる。 ディジタルスケールの種類とその原理を説明できる。 JIS で定められた表記方法で角度を表現できる。 真直度、平面度、真円度の定義と測定法を図を用いて説明できる。 表面あらさの JIS 規格 3 つを説明できる。 三針法によるねじの有効径の測定方法を図を用いて説明できる。 		
	前期末試験 試験答案の返却および解説(1)						
評価方法	学習項目別の定期試験結果と課題レポートにより、合格判定水準を満たしているか判定する. 評価の内訳は試験期ごとに、レポート 20%、試験 80%とする.						
学習・教 育目標と の関係	◎B(7) 情報と計測・制御の分野において、自然科学の知識を組合せ、理想化した例題や基本的な工学の例題に適用し、解を得る手順を概説することができる.						
関連科目	工作実習 I , II (1, 2年) → 計測工学 (5年)						
教 材	教科書:谷口 修,堀込泰雄,「計測工学」,森北出版 ISBN4-627-61161-7						
備考	・授業前に基本的な微分,積分,関数の展開方法(テイラー展開,マクローリン展開)を復習し, その物理的な意味を理解しておくこと.						