	ц	F11/4n 2/4 T			I		十成 2 4 千良		
科目名	·	制御工学 I	_	担当教員		逸見知弘			
		ol Engineer							
学 年	4	学 期	通年	科目番号	09411	単位数	2		
分 野	専門	授業形式	講義	履修条件		必履修			
	古典制御理論を学	≤び,技術者に	工必要な制御系に	こ関する解析能	之力,設計能力	を身につける.			
	・制御系を構成す	る基本的要	素(比例要素,	積分要素,1	欠遅れ要素,	2次遅れ要素,無	駄時間等)		
	の伝達関数を示	きすことがで	きる. (B-(7), I	Ξ -(3))					
学習目標	・ラプラス変換と伝達関数の関係を論理的に説明できる.(B-(7))・フィードバック制御の基本的構成								
	を理解できる. (B-(7), E-(3))								
	・基本的要素の周波数特性を求め、その物理的意味を示すことができる. (B-(7))								
	・PID 制御を用い	た制御系の記	受計法を Matlab	/Simulink を月	用いてシミュ	レーションできる	(E-(3))		
	1. 各項目ごとにそ	の基本的な	考え方と理論を	例題に基づい	て解説する.				
進め方	2. 演習問題を学生に解かせ、それらの解答に基づき、再度、必要な理論の考え方を解説する.								
	3. 必要に応じて制								
		習項目(時間		limation, Simai		格判定水準	<i></i>		
	0. ガイダンス()		1927		ш				
	1. 制御工学とは			. 7 ,	_ ドバッカ生	御の基本的構成を	な説明でき		
	1. 桐岬工子とい (1) 制御工学の					輝の基本的構成。 基本的要素の伝達	· · · · · · · · · · · · · · · · · · ·		
			*/-						
	(2) ラプラス 変			-		論理的に説明でき			
	(3) 動的シスラ	「ムの数字七、	アル			学モデルを導出て	ざ伝達関数		
				に変担	ぬすることが	出米る.			
	[前期中間試験](2	2)							
	試験答案の返却は	- 3よび解説(1))						
	2. 伝達関数の過	過渡特性・定	常特性(13)	• 基本學	要素 (1 次遅)	れ・2 次遅れ要素	の各種応		
	(1) 基本要素			答を記	†算できる.				
	(2) 1 次遅れ系	, 2 次遅れ系	の過渡特性と	・シスラ	テムの極と基	本的要素のステッ	プ応答の安		
	定常特性			定性0)関係性を説	明できる			
	(3) システムの)極と安定性	について						
	前期末試験								
学習内容	試験答案の返却は	 うよび解説 (1`)						
	3. s 領域での制			• 閉ル-	ープ制御系の	ブロック線図から	閉ループ伝		
	(1) 閉ループ制		ック線図		文を求めるこ		> 10-1		
				. —			フスの方法を		
	(2) 安定判別法(フルビッツ, ラウス) (3) フィードバック制御系の定常特性				・システムをフルビッツの方法、ラウスの方法を 用いて安定判別を行うことができる.				
	4. PID 制御(6)				・PID 制御の各要素の意味を理解し、システムに合わせた制御系設計を行なうことができる.				
	[後期中間試験] (2)				日かせた即興が取引を打なりことができる。				
	試験答案の返却は								
	5. 伝達関数の周					周波数特性(ゲー	イン特性,位		
	(1) 周波数応答				生)の計算が				
	(2) ベクトル朝		線図		・簡単な要素のベクトル軌跡、ボード線図を作図				
	(3) 基本要素の)周波数特性		でき,	それらから	周波数特性・安定	E性を読み取		
	(4) 周波数領域	なにおける安	定性	ること	こができる.				
	後期末試験								
	試験答案の返却は	- 3よび解説(1))						
	・各項目について	, 定期試験	の結果を用いて	,合格判定水	準に達してい	るかを判断する.			
評価方法							. (割合は回数, 内容に		
	よって異なるので、その都度周知する)								
	プログラム指定科								
学習•教	◎B(7):情報と診		分野において	自然科学の知	識を組合わ	け理想化した例題	や基本的か		
育目標と			カ野において, ,解を得る手順			ことが旧した内陸	ュノ生/ナリノよ		
の関係	 ○E(3):制御工学					田することができ	きる		
	電気回路(3年)						. o		
関連科目		ַ יוְשׁרְנִיתוּן	上于1 (4十)			- 美級 II (4 年) 計測工学 (5 年)			
				川川中上寸	- n (0 +)	印刷工士 (0十)			

教	材	・教科書:井上和夫監修,川田昌克,西岡勝博共著 「Matlab/Simulinkによるわかりやすい制御工学」 森北出版 ISBN978-4-627-91721-7			
		• MATLAB 用配布プリント			
備		・本授業は、数学(微分積分、線形代数、複素関数論)の内容を多分に含む学問であるため、			
	考	数学系の科目の復習を行っておくこと.			
		・使用する教科書は、非常にわかりやすく解説されているので必ず授業の予習復習を行うこと.			