機械工学科 平成 25 年度

機械工学科					平成 25 年度
科目名	数値計算法 II Numerical Methods II	担当教員	沙員 伊藤 勉		
学 年	4 年 学期 通年	履修条件	 必修	単位数	2
分 野	専門・授業形式・講義・演習	科目番号	13131026	単位区分	履修単位
学習目標	C 言語プログラミングにて、最小二乗法、補間法、数値積分、常微分方程式の初期値問題を数値的に解く能力を身につける。上述の各項目について、以下のことができることを目標とする。 1. 数値計算法の基礎式を導出することができる。 2. 基礎式を用いて数値解を電卓、手計算で求めることができる。 3. 数値解をコンピュータで計算するためのフローチャートが作成できる。 4. 数値解をコンピュータで計算するためのプログラミングができる。				
進め方	各項目について、以下の手順で授業を進める. 1. 数値的に解くための基礎式の誘導について解説する. 2. 基礎式を使って数値計算する例題を示し、演習問題を電卓で解いて提出する. 3. 上記の計算過程をフローチャートで置き換え、それにしたがってプログラミング実習を行う. 4. プログラムを用いた応用問題に取組み、その結果を提出する.				
	学習項目(時間数)		学習	到達目標	
学習内容	1. 最小二乗法(14) (1) 直線回帰による最小二乗近似 (2) 曲線回帰による最小二乗近似 [前期中間試験] (2)	きる. ・基礎: を計算	・回帰直線,回帰曲線の基礎式を導くことができる。・基礎式を用いてデータの回帰直線,回帰曲線を計算し、フローチャートの作成およびプログラミングができる。学習・教育目標との関連(B)知識		
	 補間法(14) ラグランジュ補間法 	を導 ・ 基礎: して:	・ ラグランジュ補間法による数値積分の基礎式を導くことができる.・ 基礎式を用いてラグランジュ補間の値を計算してフローチャートの作成およびプログラミングができる.		
	前期末試験 3. 数値積分(14) (1) 台形公式による数値積分 (2) シンプソンの 1/3 公式による数値積分	の基 ・ 基礎:	学習・教育目標との関連(B)知識 ・ 台形公式、シンプソンの公式による数値積分の基礎式を導くことができる。 ・ 基礎式を用いて数値積分値を計算してフローチャートの作成およびプログラミングができ		
	[後期中間試験] (2) 4. 常微分方程式の初期値問題の数値解析 (14 (1) オイラー法 (2) ルンゲ・クッタ法	く, 式を ・ 基礎	学習・教 分方程式の初 オイラー法, 導くことができ 式を用いて数け ートの作成お	刀期値問題を ルンゲ・クッ きる. 値積分値を計	タ法の基礎
	後期末試験	ا ا	学習• 差	か育日煙との関	関連(B)知識
	試験返却 (1)		丁日 我	ヘロ ロ1示 C V / F	uct (D) AHIN
評価方法	 評価の内訳に関して、レポート提出(1章, 2章, 3章, 4章:400点満点)および全4回の定期 試験(400点満点とする)を合計し、100点満点に換算して評価する。 評価の重みは、学習項目の1章を25%、2章を25%、3章を25%、4章25%として評価する。 				
履修要件	プログラミング基礎 (2年),数値計算法 I (3年)を修得していることが望ましい.				
関連科目	プログラミング基礎 (2 年) → 数値計算法 I (3 年) → <u>数値計算法 II (4 年)</u> → 計算力学 (5 年)				
教 材	教科書:杉江日出澄,鈴木淳子:「C言語と数値計算法」,培風館,および,テキストを配布 参考書:林晴比古 新訂新 C言語入門ビギナー編 ソフトバンクパブリッシング 林晴比古 新訂新 C言語入門シニア編 ソフトバンクパブリッシング 水島二郎,柳瀬真一郎:「理工学のための数値計算法」,数理工学社 など				
備考	教科書,関数電卓を授業に必ず持参のこと. 各章ごとにテキストを配布するので,各自でファイルに綴ること.				